setTitle('Semiconductors'); ?> setMetaKeywords('Physics, Semiconductors, Solid State Physics, Doping, N-doping, P-doping, Silicon, Germanium, Transistors, William Shockley, John Bardeen, Walter Brattain, Jack Kilby, Nobel, Prize, Laureate, Robert Noyce, Chip, Integrated Circuit, Conduction, Band Gap, Band, Bands, Shell, Energy, Valence, Atomic Structure, Electron-Hole, Hole, Extrinsic, Intrinsic'); ?> setMetaDescription('Nobelprize.org, Official web site of the Nobel Foundation'); ?> setCssIncludes('++/css/bare.css'); ?> printHeader('top_bare.php'); ?>
 
4:25
 
   
  Electricity

Before we start, it would be a good idea to clarify what electricity is. Electricity can be seen as a stream of electrons. Electrons are tiny particles with a negative charge. So, roughly explained, electricity is a stream of electrons flowing from one point to another.


 

A good way to explain an electric current passing through a cable would be to imagine a pipe filled with marbles that exactly fit the pipe. If we push a marble into the pipe in one end, the motion would be distributed, each marble pushing its neighbor, so that almost instantly a marble in the other end would be pushed out of the pipe.

 

 
>
   
      
printFooter('bottom_bare.php'); ?>