setTitle('Semiconductors'); ?> setMetaKeywords('Physics, Semiconductors, Solid State Physics, Doping, N-doping, P-doping, Silicon, Germanium, Transistors, William Shockley, John Bardeen, Walter Brattain, Jack Kilby, Nobel, Prize, Laureate, Robert Noyce, Chip, Integrated Circuit, Conduction, Band Gap, Band, Bands, Shell, Energy, Valence, Atomic Structure, Electron-Hole, Hole, Extrinsic, Intrinsic'); ?> setMetaDescription('Nobelprize.org, Official web site of the Nobel Foundation'); ?> setCssIncludes('++/css/bare.css'); ?> printHeader('top_bare.php'); ?>
 
21:25
 
   
  Doping

Now we are going to talk about doping. Maybe the word makes you think of athletes taking illegal drugs to perform better. Although doping in sports is outrageous, the parallel between that and doping of semiconductors is not too far-fetched. In both cases you have something pure, like an athlete or a semiconducting material, and add something foreign to it to change its performance.

 

 
 

So, in the process of doping you add a tiny amount of atoms from another material to the pure semiconductor. By doing so, you can drastically increase its ability to conduct a current. There are two forms of doping, p and n. p stands for positive and n for negative. Finally, two words that are good to know: a pure non-doped semiconductor is called intrinsic, while a doped semiconductor material is called extrinsic.

 

      
printFooter('bottom_bare.php'); ?>